Ir al contenido principal

las torres de hanoi

Escucha 'las torres de hanoi en ivoox


Los aficionados a las matemáticas recreativas conocen varios juegos, puzzles y paradojas donde es necesario desarrollar algún tipo de cálculo, en mayor o menor complejidad. Martin Gardner ha sido un divulgador científico y mago ilusionista que ha escrito algunos libros que plantean curiosos retos matemáticos, como por ejemplo las Torres de Hanoi. Las Torres de Hanoi es un “clásico” de estos puzzles, y representa uno de los juegos de lógica más conocidos.

Su planteamiento es el siguiente: sobre un soporte hay tres ejes verticales. En el eje de la izquierda se encuentran insertados tres discos de madera cuyos diámetros están ordenados de mayor a menor tamaño de forma que sobre los más grandes reposan los más pequeños. Los ejes central y derecho están vacíos en esta posición inicial.

El juego consiste en pasar todos los discos del eje de la izquierda al eje de la derecha, utilizando el eje central como apoyo a los movimientos que se necesiten. Los discos deben quedar ordenados como están al inicio del juego, de mayor a menor tamaño, y hay que traspasar los discos usando el menor número de movimientos. Para ello es preciso seguir escrupulosamente estas reglas:

  • Sólo se puede mover un disco de cada vez.

  • Solo se puede mover el disco que se encuentra en la parte superior de cada eje.

  • Un disco puede descansar sobre otro de mayor diámetro, pero no a la inversa.

  • Los tres ejes se podrán utilizar indistintamente.

Conforme el número de discos aumenta, también lo hace el número de movimientos necesarios, y por tanto la dificultad del problema. Como puedes ver para dos discos necesitas un mínimo de 3 movimientos, para 3 discos 7 movimientos, para 4 discos 15 movimientos, y, en general, para n discos se necesitan (2ˆn - 1) movimientos. A partir de 5 discos el problema se hace sensiblemente más difícil.

El planteamiento inicial de su creador, Edouard Lucas, era para 8 discos. Lucas fue un reconocido matemático por sus trabajos sobre la serie de Fibonacci. Publicó el juego ‘La tour de Hanoi’ en 1883, y al año siguiente otro divulgador científico llamado Henri de Parville lo hizo popular, desarrollando alrededor del juego una leyenda asombrosa que ocurrió en la ciudad india de Benarés, que Rabindranath Tagore consideraba la ciudad más antigua del mundo, y que decía:

“En el gran templo de la ciudad de Benarés, debajo de la cúpula que marca el centro del mundo, había una base de bronce bruñido, brillante como el sol, sobre la cual había clavadas 3 agujas verticales de diamante de un codo de longitud. Cuando Dios cré el mundo, en una de las agujas colocó sesenta y cuatro discos de oro, ordenados de mayor a menor diámetro según ascendían por las agujas. Desde entonces, día y noche sin descanso, los sacerdotes del templo se turnan en el trabajo de mover los discos de una aguja a otra de acuerdo con las leyes impuestas e inviolables por Brahma, que requieren que siempre debe haber algún sacerdote trabajando en esta difícil tarea, no pueden mover más de un disco de cada vez y deben colocar cada disco en alguna de las agujas de modo que no cubra a un disco de diámetro menor. Cuando los sesenta y cuatro discos hayan sido transferidos de la aguja en la que Dios los colocó en el momento de la Creación a otra aguja, el templo y los brahmanes se convertirán en polvo y, junto con ellos, el mundo entero desaparecerá”.
La única objeción que se me ocurre es que, quizá algún monje con algo más de iniciativa, podría haber traspasado esa pesada carga no sé… quizá a algún pequeño demonio que actuase en calidad de esclavo. Todo el mundo sabe que los demonios son muy ingeniosos en la resolución de este tipo de problemas y que, aun a regañadientes, con un buen conjuro los puedes tener trabajando para tí sin quejas y gratis durante… no sé… ¿millones de años?.

Y así han pasado millones de años.

Por eso “Las Torres de Hanoi” también son conocidas como  “Las torres de Brahma” o “El problema del fin del mundo”.

Como curiosidad, recordemos la petición que el avispado Sissa hizo a su rey como pago por el juego del ajedrez. Se trataba de ir colocando el doble de granos de trigo en cada casilla, desde la primera en que sólo se ponía un grano, y que al completar los sesenta y cuatro escaques del tablero, se convertía en una cifra inimaginable e imposible de satisfacer. En este caso hemos visto que el traslado de los 64 discos requerirá 2 elevado a 64 - 1 movimientos, un número demasiado grande para poder nombrarlo. Si cada movimiento fuese ejecutado en, digamos un segundo por decir algo, deberíamos estar moviendo discos de oro durante unos 600 mil millones de años, redondeando grosso modo, y esto representa más de 40 veces la existencia de nuestro universo.

Comentarios

Entradas populares de este blog

mi crebero hcae csoas raars !

Slóo prseoans epxertas cnsoiugen leer etso? Yo no cnogsíeua pensr que relmante pídoa etndeer lo que etbsaa lnyedo. El pdoer fdamuetanl de la mntee huamana, de aercudo con una invtesaigicón de la Unvireisadd de Cmabrigde, no ipmrota el odren en que las lteras etsén en una plabara,la úcina csoa ipmotratne es que la piremra y la últimla ltreas etsen en el lguar crotreco. El rseto pduee etaser en ttaol eniredo y tú aún pdorás leer sin pemrolba. Etso es pruqoe la mtene haunma no lee cdaa lreta idnvidailuemtne, snio que tmoa la pbrlaaa cmoo un tdoo. Ipemsrinaonte? Y yo que smirepe psené que el odern era ipmorantte! Si pdues leer etso flecitacioenis !! Cerebro: parte superior y más voluminosa del encéfalo, constituida por una masa de tejido nervioso y que se ocupa de las funciones cognitivas y emotivas y del control de actividades vitales como los movimientos, el sueño, el hambre, etc. [RAE] Y no sólo en esñopal… Sleon une édtue de l’Uvinertisé de Cmab...

el camino de santiago

Escucha 'el camino de los ingleses' en ivoox Ferrol Los hechos que se relatan a continuación están basados en hechos reales. Es la historia de una joven; para mantener su anonimato y proteger su intimidad la conoceremos en este relato con el nombre ficticio de Carmen. La personalidad de esta joven es abrumadora, de carácter sereno y firme, irradia un atractivo magnético y sofisticado. Como las polillas van a la luz, las personas se acercan a Carmen no para morir abrasadas por el fuego, sino para cobijarse en el calor humano y la paz que desprende. Aun y con todo, conocedora del mundo en que vivimos, donde muchas bestias viven al acecho de la buena voluntad de los que, como nuestra joven, van por la vida ayudando y confortando a las almas atormentadas de los menos favorecidos, Carmen nunca sale de su casa sin el spray de pimienta en su bolso, y un afilado estilete en su liga. Viajera incansable, comienza su aventura en Ferrol del Caudillo, el inicio del Cami...

auf wiedersehen

Escucha 'auf wiedersehen' en ivoox Bastogne. 14 de diciembre de 1944. A las tres horas y cincuenta minutos, el soldado William "Detroit" Johnson estaba contando los últimos minutos para acabar su guardia. Aterido de frío, con los músculos agarrotados en su pozo de tirador, con la mirada perdida por el sueño, sintió un fuerte golpe en su casco que le despabiló. Apretando por instinto su fusil, levantó ligeramente la cabeza mirando hacia atrás con cara de pocos amigos, pensando que algún gracioso le había lanzado una piedra. Escudriñó la oscuridad durante unos instantes pero no vio ningún movimiento delator. — Habrá sido el capullo de Morris. — pensó. Se quitó el casco y lo inspeccionó. Descubrió una abolladura en el lateral izquierdo. — Rayos, ¿una bala perdida? Vaya, ha estado cerca...  — se dijo. Al colocarse de nuevo el casco y volver su atención al frente creyó que soñaba despierto. Una figura en la distancia se acercaba hacia él sin ningún...